Model Evaluation in Python - RSquare Mean Absolute Eror

3 minutes
Share the link to this page
Copied
  Completed
You need to have access to the item to view this lesson.
One-time Fee
$49.99
List Price:  $69.99
You save:  $20
€41.97
List Price:  €58.77
You save:  €16.79
£36.40
List Price:  £50.96
You save:  £14.56
CA$67.71
List Price:  CA$94.80
You save:  CA$27.09
A$71.65
List Price:  A$100.32
You save:  A$28.66
S$63.43
List Price:  S$88.81
You save:  S$25.38
HK$390.31
List Price:  HK$546.47
You save:  HK$156.15
CHF 38.47
List Price:  CHF 53.87
You save:  CHF 15.39
NOK kr480.58
List Price:  NOK kr672.85
You save:  NOK kr192.27
DKK kr313.46
List Price:  DKK kr438.87
You save:  DKK kr125.41
NZ$82.81
List Price:  NZ$115.94
You save:  NZ$33.13
د.إ183.58
List Price:  د.إ257.03
You save:  د.إ73.45
৳6,123.41
List Price:  ৳8,573.27
You save:  ৳2,449.85
₹4,599.02
List Price:  ₹6,439
You save:  ₹1,839.97
RM197.06
List Price:  RM275.90
You save:  RM78.84
₦69,482.10
List Price:  ₦97,280.50
You save:  ₦27,798.40
₨13,988.45
List Price:  ₨19,584.95
You save:  ₨5,596.50
฿1,573.45
List Price:  ฿2,202.95
You save:  ฿629.50
₺2,174.62
List Price:  ₺3,044.65
You save:  ₺870.02
B$259.71
List Price:  B$363.62
You save:  B$103.90
R800.52
List Price:  R1,120.79
You save:  R320.27
Лв82.10
List Price:  Лв114.95
You save:  Лв32.84
₩72,240.48
List Price:  ₩101,142.45
You save:  ₩28,901.97
₪155.03
List Price:  ₪217.06
You save:  ₪62.02
₱2,948.89
List Price:  ₱4,128.68
You save:  ₱1,179.79
¥7,712.30
List Price:  ¥10,797.84
You save:  ¥3,085.54
MX$866.95
List Price:  MX$1,213.80
You save:  MX$346.85
QR182.01
List Price:  QR254.84
You save:  QR72.82
P653.52
List Price:  P914.99
You save:  P261.46
KSh6,462.20
List Price:  KSh9,047.60
You save:  KSh2,585.40
E£2,346.14
List Price:  E£3,284.79
You save:  E£938.64
ብር7,755.94
List Price:  ብር10,858.94
You save:  ብር3,103
Kz45,597.52
List Price:  Kz63,840.18
You save:  Kz18,242.66
CLP$42,941.41
List Price:  CLP$60,121.41
You save:  CLP$17,180
CN¥347.57
List Price:  CN¥486.62
You save:  CN¥139.05
RD$3,148.78
List Price:  RD$4,408.55
You save:  RD$1,259.76
DA6,468.40
List Price:  DA9,056.28
You save:  DA2,587.87
FJ$109.91
List Price:  FJ$153.89
You save:  FJ$43.97
Q384.50
List Price:  Q538.34
You save:  Q153.83
GY$10,484.18
List Price:  GY$14,678.69
You save:  GY$4,194.51
ISK kr6,086.28
List Price:  ISK kr8,521.28
You save:  ISK kr2,435
DH453.80
List Price:  DH635.36
You save:  DH181.55
L840.87
List Price:  L1,177.29
You save:  L336.41
ден2,581.91
List Price:  ден3,614.89
You save:  ден1,032.97
MOP$402.87
List Price:  MOP$564.05
You save:  MOP$161.18
N$794.09
List Price:  N$1,111.79
You save:  N$317.70
C$1,844.55
List Price:  C$2,582.52
You save:  C$737.96
रु7,377.95
List Price:  रु10,329.73
You save:  रु2,951.77
S/167.21
List Price:  S/234.11
You save:  S/66.90
K212.98
List Price:  K298.19
You save:  K85.21
SAR187.49
List Price:  SAR262.50
You save:  SAR75.01
ZK991
List Price:  ZK1,387.48
You save:  ZK396.48
L213.99
List Price:  L299.61
You save:  L85.61
Kč1,021.47
List Price:  Kč1,430.14
You save:  Kč408.67
Ft16,031.59
List Price:  Ft22,445.51
You save:  Ft6,413.92
SEK kr442.94
List Price:  SEK kr620.16
You save:  SEK kr177.21
ARS$72,189.68
List Price:  ARS$101,071.33
You save:  ARS$28,881.64
Bs346.25
List Price:  Bs484.78
You save:  Bs138.53
COP$184,105.07
List Price:  COP$257,761.83
You save:  COP$73,656.76
₡24,796.80
List Price:  ₡34,717.51
You save:  ₡9,920.70
L1,323.73
List Price:  L1,853.33
You save:  L529.60
₲336,291.12
List Price:  ₲470,834.47
You save:  ₲134,543.35
$U1,939.80
List Price:  $U2,715.88
You save:  $U776.07
zł176.87
List Price:  zł247.64
You save:  zł70.76
Already have an account? Log In

Transcript

Okay to evaluate let's say linear regression our prediction model regression model. So we can use all those r square or those mean absolute error mean squared error. So to do that we have to employ SQL and domain trees and then import them in as absolute error and then that means square. So we can do something like this. So praying Okay, so I do the R square. It bras.

More the dogs score, x train and y train k I today in mean absolute error free slash mean to absolute error okay. So I will use mean absolute error mean absolute error and then put in our y test and then prediction prediction okay then I can print the mean square error means square error k means square has Why test inventor prediction. So I going to get some error because I need to convert them to str. So I need to convert them to string str the STL here STL here okay then I can run the code I should get asked raise arousal on a server. So the higher this value, meaning the higher the modest value is going to be one, then the model is more accurate a lot more better than mean absolute error means The mean of error, then our mean square error means we square the error and and get an average and then I will say the lesser the error the better the model.

So, this is how we evaluate a regression model those are prediction water. So, classification is for predicting all those variables if categories or groups are cross So, we use classification to predict all those categorical variables, we use a prediction model to predict all those numeric variables. So, for classification we use confusion matrix. So, for prediction or regression we use our square mean absolute error and the mean square error

Sign Up

Share

Share with friends, get 20% off
Invite your friends to LearnDesk learning marketplace. For each purchase they make, you get 20% off (upto $10) on your next purchase.